Name of Scholar : Aashna Perwin Name of Supervisor : Prof. Nasreen Mazumdar Name of the Department : Chemistry Topic of Research : Synthesis of Aldehydic Monomers and their Polymerization

Findings

The thesis comprises six chapters. Chapter 1, titled "Introduction and Literature Review," provides an extensive literature review on the antimicrobial properties of derivatives from salicylaldehyde and indole-3-carboxaldehyde, detailing their applications and polymerization techniques alongside an analysis of polymers like PMMA, polyvinyl alcohol, and gelatin. Chapter 2, titled "Synthesis and Characterization of O-acyl Salicylaldehyde Derivatives and Copolymerization of Bis-(2-formylphenyl) Fumarate with Methyl Methacrylate," discusses the acylation of salicylaldehyde with di- and tri-acyl chlorides under basic conditions, structural confirmation through spectroscopic methods (1H and 13C NMR, FT-IR, HRMS, SC-XRD), and the free-radical copolymerization of one derivative with MMA, resulting in a thermally stable copolymer with crystalline morphology. Chapter 3, titled "Synthesis and Characterization of O-alkyl/Aryl Salicylaldehyde Derivatives and Free-Radical Homopolymerization of 3-(2formylphenoxy)-2-hydroxypropyl Methacrylate," focuses on O-alkyl/aryl salicylaldehyde derivatives synthesized using modified Ullmann and Mitsunobu reactions, with structural elucidation through spectroscopic techniques and a homopolymer exhibiting enhanced thermal stability and smoother morphology. Chapter 4, titled "Synthesis and Characterization of N-acyl Indole-3-carboxaldehyde Derivatives and Polyvinyl Alcohol Acetalization with 1propionylindole-3-carboxaldehyde," explores the acylation of indole-3-carboxaldehyde, structural confirmation via spectroscopic analyses, and polyvinyl alcohol acetalization,

producing a water-insoluble polymer with superior thermal stability. Chapter 5, titled "Study on N-alkylation/Arylation of Indole-3-carboxaldehyde and Gelatin Functionalization via Schiff Base Formation," examines the N-alkylation/arylation of indole-3-carboxaldehyde via modified Ullmann reactions and gelatin functionalization through Schiff base formation, yielding a water-soluble polymer with improved thermal stability. Finally, Chapter 6, titled "Exploring the Synthesis of Poly(azomethine-ester) through Oxidative Polycondensation of Salicylaldehyde Schiff Bases," explores the synthesis of Schiff base derivatives from salicylaldehyde and their oxidative polycondensation using a green oxidant, resulting in a thermally stable polymer suitable for high-temperature applications. Overall, the thesis involves the synthesis of 23 aldehydic monomers, 19 of which are novel organic compounds, along with the polymerization of selected monomers.