SI no	Title	Name of the Journal/ Conference/ Event, Vol/Issue	Publisher	SCIE/ ESCI/ SCOPUS	YEAR	Impact Factor/ Cite Score	Citat ion
1	A comprehensive study of pedestrian safety behaviour at urban signalised T- intersections	Transportation Planning and Technology, 47(5)	TAYLOR & FRANCIS LTD	SCIE	2024	1.3	0
2	Dynamic Analysis of an Articulated Offshore Tower Using Stokes Fifth Order Nonlinear Wave Theory	KSCE Journal of Civil Engineering, 27(12)	KOREAN SOCIETY OF CIVIL ENGINEERS- KSCE	SCIE	2024	1.9	0
3	A comprehensive review of nano materials in geopolymer concrete: Impact on properties and performance	Developments in the Built Environment, 16	ELSEVIER	SCIE	2023	6.2	12
4	Water quality modeling- based assessment for the scope of wastewater treatment of the urban reach of River Yamuna at Delhi, India	Environmental Monitoring And Assessment, 196 (155)	SPRINGER	SCIE	2024	2.9	1
5	Synthesis of biodegradable sodium alginate-based carbon dot-nanomagnetic composite (SA-FOCD) for enhanced water remediation using ANN modelling, RSM optimization, and economic analysis	International Journal of Biological Macromolecules, 263(1)	ELSEVIER	SCIE	2024	7.7	2
6	Effects of chemicals exposure on the durability of geopolymer concrete incorporated with silica fumes and nano-sized silica at varying curing temperatures	Materials, 16(18)	MDPI	SCIE	2023	3.1	10

7	Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete	Computers and Concrete, 32(6)	TECHNO-PRESS	SCIE	2023	2.9	1
8	Water quality management by enhancing assimilation capacity with flow augmentation: a case study for the Yamuna River, Delhi	Water Science & Technology, 88(7)	IWA PUBLISHING	SCIE	2023	2.5	2
9	Assessment of Spatiotemporal Variations in Water Quality of the Urban River Reach, Yamuna, Delhi	Water Air and Soil Pollution, 234(571)	SPRINGER INT PUBL AG	SCIE	2023	3.8	4
10	Facile synthesis of biomass derived economically viable carbon dot polymer nanocomposite: a perspective towards sustainable removal of dyes from synthetic wastewater	Journal of Water Process Engineering, 58(104748)	ELSEVIER	SCIE	2024	6.3	4
11	Stabilized municipal solid waste as an alternative to natural sand in paver block construction	Process Safety And Environmental Protection, 182	ELSEVIER	SCIE	2024	6.9	5
12	Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm	Scientific Reports, 13(1)	NATURE PORTFOLIO	SCIE	2023	3.8	13
13	Trihalomethanes monitoring and their seasonal variation in urban municipal water supply system in North India	International Journal Of Environmental Science And Technology	SPRINGER	SCIE	2024	3	1

14	Energy based seismic vulnerability assessment tool for reinforced concrete bridges	Bulletin Of Earthquake Engineering	SPRINGER	SCIE	2024	3.8	0
15	Developing slow-release fertilizer based on pyrolysis of domestic biogas digestate cake: A circular economy approach for rural farmers	Biomass and Bioenergy, 178(106966)	PERGAMON- ELSEVIER SCIENCE LTD	SCIE	2023	5.8	1
16	Ammonia gas treatment in low cost biological reactor	Bioresource Technology, 391(129949)	ELSEVIER SCI LTD	SCIE	2024	9.7	0
17	Modeling pedestrian behavior at urban signalised intersections using statistical- ANN hybrid approach–case study of New Delhi	Case studies on transport policy, 13(101038)	ELSEVIER	ESCI	2023	2.4	4
18	Characterisation investigation on organic compost of municipal solid waste using physico- chemical, spectroscopic and thermal methods at different stages	International Journal of Environment and Waste Management, 34(1)	INDERSCIENCE ENTERPRISES LTD	ESCI	2024	0.5	1
19	Validation of Road Traffic Noise Prediction Model (Stop and Go) for Road Traffic Conditions of Delhi, India	Transportation in Developing Economies, 10(20)	SPRINGER INT PUBL AG	ESCI	2024	1.5	0
20	Dynamic response of CFST column with in-plane cross reinforcement and partial CFRP wrapping upon contact blast	Innovative Infrastructure Solutions	SPRINGER INT PUBL AG	ESCI	2023	2.3	9

21	Role of carbon steel hollow	International	INDERSCIENCE	ESCI	2023	1.2	5
	tubes in-lieu of conventional	Journal of Masonry	ENTERPRISES				
	steel rebars on the anti-blast	Research and	LTD				
	performance of RC slab of	Innovation.					
	standard concrete externally						
	strengthened with metallic						
	foam						
22	Evaluating biogas potential	Energy Ecology and	SPRINGERNAT	ESCI	2024	3.9	1
	of organic fraction of	Environment, 9	URE			0.0	_
	wholesale market wastes in	Environment, 5	One				
	New Delhi, India: anaerobic						
	co-digestion with sewage						
	sludge and cattle manure						
23	Post COVID Performance	AIP Conference		SCOPUS	2023	0.5	1
	Evaluation of Delhi Metro	Proceedings,					
		2721(1)					
24	Machine Learning Approach	AIP Conference		SCOPUS	2023	0.5	1
	for Predicting Jaywalking	Proceedings,					
	Behavior - A Case Study of	2721(1)					
	New Delhi	(-)					
25	Trend Analysis of Rainfall	IOP Conference		SCOPUS	2024	1	1
23	and Temperature of Periyar	Series: Earth and		5001 05	2021	-	-
	River Basin	Environmental					
	River basin						
		Science, 1326(1)					
26	Stabilization of Dredged Soil	Nature	TECHNOSCIEN	SCOPUS	2024	1.2	0
	by Compensating the Sand	Environment and	CE	000100	2021		Ŭ
	Content in the Jhelum River	Pollution					
			I OBLICATIONS				
	Determination of an anti-	Technology, 23(3)		SCODUC	2024	2.7	
27	Determination of properties	Journal of Building	SPRINGER	SCOPUS	2024	2.7	0
	of concrete in its fresh stage	Pathology and	NATURE				
	for classified quartzite rocks	Rehabilitation, 9(1)					
	in the Aravalli ranges, New						
	Delhi, India						
28	Comprehensive Water	AIP Conference		SCOPUS	2023	0.5	0
20	Management Plan Using	Proceedings,		500105	2023	0.5	
		. .					
	Rainwater Harvesting	2721(1)					
	System for A Resort at Kothli						
	Village, Rishikesh						

20	Effort of motorial	lournal of			2024	1.0	
29	Effect of material characteristics of lead rubber isolators on seismic performance of box girder bridge	Journal of Engineering and Applied Science, 71(115)	SPRINGER NATURE	SCOPUS	2024	1.8	2
30	Dynamic behavior of axially loaded masonry walls strengthened with different innovative techniques under explosion loading	Materials Today: Proceedings		SCOPUS	2024	4.9	1
31	Effect of strong ground motion on the dynamic response of concrete gravity dam based on linear correlation analysis	AIP Conference Proceedings, 2888(1)		SCOPUS	2023	0.5	2
32	Vulnerability Assessment of Steel Box Girder Bridge Subjected to Earthquakes	AIP Conference Proceedings, 2721(1)		SCOPUS	2023	0.5	0
33	Enhancing Blue-Green Infrastructures for Flood and Water Stress Management: A Case Study of Chennai	Lecture Notes in Civil Engineering, 353	SPRINGER NATURE	SCOPUS	2024	0.8	2
34	Modelling the Impact of Road Dust on Air Pollution: A Sustainable System Dynamics Approach	E3S Web of Conferences, 430		SCOPUS	2023	0.9	4
35	Land Use/Land Cover Monitoring and Change Detection of Sabarmati River Basin Using GIS and Remote Sensing	Lecture Notes in Civil Engineering, 339	SPRINGER NATURE	SCOPUS	2023	0.8	0

36	Analysis of tunnel-pile	International	INDERSCIENCE	SCOPUS	2024	1.2	0
50	interaction and predictive	Journal of	PUBLISHERS	300903	2024	1.2	0
	modelling of pile foundation	Computational	FODEISHEIG				
	response to tunnel	Materials Science					
	excavation at various	and Surface					
	horizontal positions using	Engineering, 12(1)					
	PLAXIS						
37	Response of Pile Foundation	Bulletin For	DEPUTAZIONE	SCOPUS	2023	0.1	0
57	due to a new Tunnel in the	Technology And	SUBALPINA DI	3001 03	2025	0.1	Ŭ
	vicinity at different vertical	History, 23(9)	STORIA PATRIA				
	position	1113001 y, 20(0)					
	position						
38	Punching shear failure:	Asian Journal of	SPRINGER	SCOPUS	2024	2.7	0
	dangerous failure zone of bi-	Civil Engineering,	NATURE				
	axial voided slab	25(5)					
39	Analytical investigation and	Asian Journal of	SPRINGER	SCOPUS	2024	2.7	0
	cost comparison on voided	Civil Engineering,	NATURE				
	slab using ABAQUS	25(5)					
40	Cost comparison and	Asian Journal of	SPRINGER	SCOPUS	2024	2.7	1
	numerical investigation of	Civil Engineering,	NATURE				
	voided slab using Abaqus for	25(4)					
	different shapes and sizes of						
	void formers with						
	conventional rebar replaced						
	with GFRP rebar						
41	Numerical investigation and	Asian Journal of	SPRINGER	SCOPUS	2024	2.7	1
	cost comparison on voided	Civil Engineering,	NATURE				
	slab with replacement of	25(2)					
	conventional steel with						
	GFRP reinforcement bars						
	using FEM for different						
	shapes and spacing of void						
	formers						
				CODUC	2022	4.0	
42	Upcycling of used ceramic	materialstoday:		SCOPUS	2023	4.9	0
1	membrane as media in	Proceedings					
1	upflow biological reactor						
1	treating low strength						
	wastewater						
43	An Overview of Treatment	IOP Conference		SCOPUS	2024	4.9	0
	Approaches for Handling of	Series: Earth and		5001 05	2027	7.5) Š
1	Common Effluent Treatment	Environmental					
	Plant's Sludge	Science, 1326(1)					
	i ant 5 Stadge	50,01,00, 1020(1)					
							

44	Innovative approach to waste management: utilizing stabilized municipal solid waste in road infrastructure	Environmental Science and Pollution Research, 31(7)	Springer Nature	SCOPUS	2024	8.7	1
45	New independent component-based spectral index for precise extraction of impervious surfaces through Landsat-8 images	Geocarto International, 37(27)	TAYLOR & FRANCIS LTD	SCIE	2022	3.3	3
46	A review on material mix proportion and strength influence parameters of geopolymer concrete: Application of ANN model for GPC strength prediction	Construction and Building Materials, 356, 129253	ELSEVIER SCI LTD	SCIE	2022	7.4	55
47	Fouling behaviour of	International	Springer	SCIE	2023	3	2
48	industrial waste-based Performance of Anaerobic Membrane Bioreactor (AnMBR) with Sugarcane Bagasse Ash-based Ceramic Membrane treating Simulated Low-strength Municipal Wastewater: Effect of Operation Conditions	Journal of Water, Air, and Soil Pollution, 234	Nature Springer Nature	SCIE	2023	3.8	3
49	Failure mode and effects analysis of common effluent treatment plants of humid sub-tropical regions using fuzzy based MCDM methods	Engineering Failure Analysis, 145, 107010	PERGAMON- ELSEVIER SCIENCE LTD	SCIE	2023	4.4	16
50	Feasibility of the adsorption as a process for its large scale adoption across industries for the treatment of wastewater: Research gaps and economic assessment	Journal of Cleaner Production, 388, 136014	ELSEVIER SCI LTD	SCIE	2023	9.7	69

				1			
51	Prediction of PM2.5	Stochastic	Springer	SCIE	2022	3.9	13
	concentrations using soft	Environmental	Nature				
	computing techniques for	Research and Risk					
	the megacity Delhi, India	Assessment, 37					
52	Data-driven predictive	Environmental	Springer	SCIE	2022	2.9	31
52	modeling of PM2.5	Monitoring and	Nature		2022	2.5	51
	concentrations using	Assessment, 195	Nature				
	machine learning and deep	A33635111611, 155					
	learning techniques: a case						
	study of Delhi, India						
	study of Denni, mula						
53	Remediation of anionic dye	Journal of	ELSEVIER	SCIE	2022	5.3	28
	from aqueous solution	Molecular Liquids,					
	through adsorption on	360, 119497					
54	Evaluation of a Cross-	IEEE Sensors	IEEE	SCIE	2023	4.3	4
	Conductance Sensor for	Journal, 23(2)					
	Cement Paste Hydration						
	Monitoring and Setting Time						
	Measurement						
55	Cultivation of aerobic	Environmental	WILEY	SCIE	2023	2.1	0
	granular biomass in	Progress &					
	continuous flow-intermittent	Sustainable Energy,					
	decant type reactor fed with	42(6)					
	anaerobic effluent						
56	High-rate ex situ and in situ	Journal of Water	ELSEVIER	SCIE	2022	6.3	2
50	treatment system for	Process	ELSEVIER	SCIE	2022	0.5	2
	groundwater denitrification	Engineering, 50,					
	via membrane-based	103230					
	bacterial macro-	105250					
	encapsulation						
	Chicapsulation						
57	Enhanced combined	Environmental	ELSEVIER	SCIE	2022	6.7	5
1	assimilative and bound	Technology &					
	phosphorus uptake in	Innovation, 28,					
1	concurrence with nitrate	102909					
1	removal in pre-anoxic cyclic						
	sequencing batch reactor						
58	Improvements in the	Materials, 15(22)	MDPI	SCIE	2022	3.1	11
	Engineering Properties of						
	Cementitious Composites						
	Using Nano-Sized Cement						
	and Nano-Sized Additives						

59	Crosswalk Utilization by Pedestrian: Perception	International Journal of	MATERIALS & ENERGY	ESCI	2022	1.5	5
	versus Reality-Case Study of New Delhi	Engineering, 35(12)	RESEARCH CENTER-MERC				
60	Post-COVID-19 performance evaluation of urban metro transit system in Delhi and influence on access mode	CASE STUDIES ON TRANSPORT POLICY, 10(3)	ELSEVIER	ESCI	2022	2.4	4
61	Comparative study of Ranney well and Hydro- abstraction well and ground	Modeling Earth Systems and Environment, 9(3)	SPRINGER HEIDELBERG	ESCI	2023	2.7	0
62	Hydrological modelling of Bhagirathi River basin using HEC-HMS	Journal of Applied Water Engineering and Research, 11(2)	TAYLOR & FRANCIS LTD	ESCI	2023	1.4	13
63	Influence of Near Fault Earthquakes with Forward Directivity and Fling Step on	International Journal of Sustainable	UNIV TUN HUSSEIN ONN MALAYSIA	ESCI	2023	0.6	1
64	Probabilistic Damage Analysis of Isolated Steel Tub Girder Bridge Excited by Near and Far Fault Ground Motions	International Journal of Engineering, 36(2)	MATERIALS & ENERGY RESEARCH CENTER-MERC	ESCI	2023	1.5	1
65	Vulnerability assessment of steel box-girder bridge under near-field and far-field earthquakes	Innovative Infrastructure Solutions, 8(1)	SPRINGER INT PUBL AG	ESCI	2023	2.3	8
66	Physico-chemical characterisation and quantification of municipal solid waste in high-altitude Srinagar City of North- Western Himalayas	International Journal of Environment and Waste Management, 30(3)	INDERSCIENCE ENTERPRISES LTD	ESCI	2022	0.5	4
67	Blast performance enhancement prediction of circular column with helical mesh reinforcement and strengthened with UHPFRC plaster, and CFRP wrapping under close-in blast	International Journal of Structural Engineering, 13(2)	INDERSCIENCE ENTERPRISES LTD	ESCI	2023	0.7	12

68	Modeling of crashworthy foam mounted braced unreinforced brick masonry wall and prediction of anti- blast performance	International Journal of Protective Structures, 15(2)	SAGE PUBLICATIONS LTD	ESCI	2023	2.1	17
69	Damage Assessment of Reinforced Concrete Bridges Under the Ground Motions-a Probabilistic Approach	Journal of Applied Engineering Sciences, 12(2)	SCIENDO	ESCI	2022	1	0
70	Anaerobic/Oxic/Anoxic Mode Sequencing Batch Reactor: Treatment Performance and Development of Aerobic Granular Sludge	Oriental Journal of Chemistry, 39(3)	ORIENTAL SCIENTIFIC PUBL CO	ESCI	2023	0.3	1
71	Evaluation of Users Approbation Indicators of Delhi Metro	Lecture Notes in Civil Engineering, 261	Springer Nature	SCOPUS	2023	0.8	1
72	Traffic Signal Violation Behavior of Pedestrian at Urban Intersections—A Case Study of New Delhi	Lecture Notes in Civil Engineering, 284	Springer Nature	SCOPUS	2023	0.8	3
73	Quality Assessment of Ground Water at Andaman and Nicobar Islands District, India—A Review	Smart Innovation, Systems and Technologies, 334	Springer Nature	SCOPUS	2023	1.1	0
74	Effect of Biohazard Waste on Human Health	Lecture Notes in Electrical Engineering, 1023	Springer Nature	SCOPUS	2023	0.7	0
75	Impact of climate change on water availability in Bhagirathi River Basin, India	ISH Journal of Hydraulic Engineering, 29(5)	Taylor & Francis	SCOPUS	2023	4.3	2
76	Performance enhancement of square reinforced concrete column carrying axial compression by (1) C- FRP wrapping, and (2) steel angle system under air-blast loading.	International Journal of Computational Materials Science and Surface Engineering, 11(2)	Inderscience Publishers	SCOPUS	2022	1.2	25

77	A review paper on energy harvesting in arid and semi- arid region via PV cell on irrigation canals	Materials Today: Proceedings, 69		SCOPUS	2022	4.9	1
78	Optimization of industrial operations to control air pollution using system dynamics.	Materials Today: Proceedings, 69		SCOPUS	2022	4.9	2
79	Geo-statistical analysis of ground water fluctuations for sustainable management of groundwater resources within the chaliyar basin, southwest India	IOP Conference Series: Earth and Environmental Science, 1084(1)		SCOPUS	2022	1	0
80	Numerical investigation on two-way voided slab using ABAQUS with replacement of conventional steel with GFRP reinforcement bars	Asian Journal of Civil Engineering, 25	Springer Nature	SCOPUS	2023	2.7	0
81	Strengthening of Axially Loaded Circular RC Column under Close-In and Contact Blasts: A Numerical Investigation	Lecture Notes in Civil Engineering, 256	Springer Nature	SCOPUS	2023	0.8	25
82	Numerical simulation of a bowstring steel highway girder bridge response to blast loads: model	International Journal of Reliability and Safety, 16(3-4)	Inderscience Publishers	SCOPUS	2022	1	8
83	Reinforced cement concrete (RCC) shelter and prediction of its blast loads capacity	Materials Today: Proceedings, 74		SCOPUS	2023	4.9	40
84	Performance prediction of braced unreinforced and strengthened clay brick masonry walls under close- range explosion through numerical modelling	International Journal of Computational Materials Science and Surface Engineering, 11(2)	Inderscience Publishers	SCOPUS	2022	1.2	29
85	Optimization of Single-Track PSC I-Girder for Metro Viaduct	Lecture Notes in Civil Engineering, 331	Springer Nature	SCOPUS	2023	0.8	0

86	Coastal macrophytes as	Marine Pollution	PERGAMON-	SCIE	2022	5.3	14
	bioindicators of trace metals	Bulletin, 178,	ELSEVIER				
	in the Asia's largest lagoon	113576	SCIENCE LTD				
	ecosystem						
87	Using new independent	Physics and	PERGAMON-	SCIE	2022	3	7
	component analysis (ICA)	Chemistry of the	ELSEVIER				
	based spectral index to	Earth, Parts A/B/C,	SCIENCE LTD				
	extract and map built-ups of						
88	Statistical analysis of	MAUSAM, 73(2)	INDIA	SCIE	2022	0.7	0
	precipitation, temperature		METEOROLOGI				
	and snow cover in Bhagirathi		CAL DEPT				
	River basin						
89	Aerodynamic and	Wind and	TECHNO-PRESS	SCIE	2021	1.3	1
	hydrodynamic force	Structures, 33(2)					
90	Energy generation and	Chemosphere, 299	PERGAMON-	SCIE	2022	8.1	35
	revenue potential from		ELSEVIER				
	municipal solid waste using		SCIENCE LTD				
	system dynamic approach						
91	Evaluation of cost benefit	Journal of King Saud	ELSEVIER	SCIE	2022	3.7	61
	analysis of municipal solid	University-Science,					
	waste management systems	34(4)					
92	A review on emerging	Journal of Cleaner	ELSEVIER SCI	SCIE	2021	9.7	172
	artificial intelligence (AI)	Production, 322,	LTD				
	techniques for air pollution	129072					
	forecasting: Fundamentals,						
	application and performance						
93	Environmental resilience and		Korean Society	SCIE	2022	3	7
	sustainability through green	Engineering	of				
	technologies: A case	Research, 27(5)	Environmental				
	evidence from rural coastal		Engineers				
	India						
94	Selecting suitable seed	Bioresource	ELSEVIER SCI	SCIE	2022	9.7	15
	sludge for anammox	Technology, 347	LTD				
95	Enhancing methane	Renewable and	PERGAMON-	SCIE	2021	16.3	83
	production in anaerobic	Sustainable Energy	ELSEVIER				
	digestion through hydrogen	Reviews, 151,	SCIENCE LTD				
	assisted pathways–A state-of-	111536					
	the-art review						

96	Performance and	Journal of	ASCE-AMER	SCIE	2021	1.6	3
	sustainability assessment of	Environmental	SOC CIVIL				
	full-scale sewage treatment	Engineering,	ENGINEERS				
	plants in Northern India	147(12)					
	using multiple-criteria						
	decision-making methods						
97	An investigation on the	Materials Research	IOP	SCIE	2022	1.8	40
	effect of curing conditions	Express, 9(5)	PUBLISHING				
98	Geopolymer Concrete: A	Crystals, 12(4)	MDPI	SCIE	2022	2.4	82
	Material for Sustainable						
99	COVID-19 transmission,	Environmental	SPRINGER	SCIE	2022	15	70
	vulnerability, persistence	Chemistry Letters,	HEIDELBERG				
	and nanotherapy: a review	19					
100	Post Covid-19 Access-Egress	Journal of Applied	SCIENDO	ESCI	2022	1	1
	Attributes for Urban Metro	Engineering					
	Transit Users in Delhi	Sciences, 12(1)					
101	Application of HEC-HMS for	Modeling Earth	SPRINGER	ESCI	2022	2.7	15
	hydrological modeling of	Systems and	HEIDELBERG				
	upper Sabarmati River Basin,	Environment, 8(4)					
	Gujarat, India						
102	Monitoring of	Pollution, 8(3)	UNIV TEHRAN	ESCI	2022	1.1	12
103	Performance of (1) concrete-	International	SAGE	ESCI	2022	2.1	56
	filled double-skin steel tube	Journal of	PUBLICATIONS				
	with and without core	Protective	LTD				
	concrete, and (2) concrete-	Structures.					
104	Evaluation of critical damage	International	SAGE	ESCI	2022	2.1	83
	location of contact blast on	Journal of	PUBLICATIONS				
	conventionally reinforced	Protective	LTD				
105	Air-blast and ground	International	SAGE	ESCI	2021	2.1	122
1	shockwave parameters,	Journal of	PUBLICATIONS				
	shallow underground	Protective	LTD				
106	A study on existing masonry	International	INDERSCIENCE	ESCI	2021	0.7	73
1	heritage building to	Journal of Structural	ENTERPRISES				
1	explosive-induced blast	Engineering, 11(4)	LTD				
1	loading and its response						
107	Sediment Yield Estimation	Lecture Notes in	Springer	SCOPUS	2022	0.8	0
1	and Reservoir Sedimentation	Civil Engineering,	Nature				
1	Assessment Using Geospatial						
1	Tools: A Case Study of Tehri						
1	Dam Reservoir						

	Response of strengthened unreinforced brick masonry	Materials Today: Proceedings, 64(1)		SCOPUS	2022	4.9	38
	,	Proceedings 64(1)		1			
,		1 1 0 C C C U II g 3, 0 4 (1)					
	wall with (1) mild steel wire						
	mesh and (2) CFRP						
	wrapping, under close-in						
	blast						
109	Damage assessment of	Materials Today:		SCOPUS	2022	4.9	12
	circular bridge pier	Proceedings, 64(1)					
110 E	Effect of lead rubber bearing	Materials Today:		SCOPUS	2022	4.9	13
	on seismic performance of	Proceedings, 64(1)					
	steel box girder bridge						
111	Seismic Base Isolation of 7	Structural Integrity,	Springer	SCOPUS	2022	0.9	1
	Storey RC Structure Using	27	Nature				
112	Simulation of Groundwater	Lecture Notes in	Springer	SCOPUS	2021	0.7	1
	level by Artificial Neural	Electrical	Nature				
	Networks of Parts of	Engineering, 796					
	Yamuna River Basin						
113	Jacketing with steel angle	Asian Journal of	Springer	SCOPUS	2022	2.7	58
s	sections and wide battens of	Civil Engineering, 23	Nature				
	RC column and its influence						
	on blast performance						
114 F	Performance of RCC Column	Lecture Notes in	Springer	SCOPUS	2022	0.8	31
	Retrofitted with CFRP	Civil Engineering,	Nature				
115	Numerical Analysis on	Lecture Notes in	Springer	SCOPUS	2022	0.8	0
	Voided Slab with Different	Civil Engineering,	Nature				
	Reinforcement on ANSYS	196					
	2020R1						
116	Effect of transverse circular	Materials Today:		SCOPUS	2022	4.9	50
	and helical reinforcements	Proceedings, 64					
	on the performance of						
	circular RC column under						
	high explosive loading						
117	A comparative performance	Materials Today:		SCOPUS	2022	4.9	55
	of columns: reinforced	Proceedings, 62					
	Performance of composite	Materials Today:		SCOPUS	2022	4.9	48
	and tubular columns under	Proceedings, 65					
119	Strengthening of Axially	Lecture Notes in	Springer	SCOPUS	2022	0.8	25
	Loaded Circular RC Column	Civil Engineering,	Nature				
	under Close-In and Contact	256					
	Blasts: A Numerical						
	Investigation						

120	Performance based strengthening with concrete protective coatings on braced unreinforced masonry wall subjected to close-in explosion	Materials Today: Proceedings, 64		SCOPUS	2022	4.9	54
121	Strengthening of braced unreinforced brick masonry wall with (i) C-FRP wrapping, and (ii) steel angle-strip system under blast loading	Materials Today: Proceedings, 58		SCOPUS	2022	4.9	68
122	Out-of-plane Response of Clay Brick Unreinforced and Strengthened Masonry Walls	Lecture Notes in Civil Engineering, 202	Springer Nature	SCOPUS	2022	4.9	61
123	Influence of Charge Locations on Close-in Air- blast Response of Pre- tensioned Concrete U-girder	Lecture Notes in Civil Engineering, 202	Springer Nature	SCOPUS	2022	4.9	60
124	Performance of on-ground double-roof RCC shelter with energy absorption layers under close-in air-blast loading	Asian Journal of Civil Engineering, 22(8)	Springer Nature	SCOPUS	2021	2.7	78
125	Progressive Collapse: A Review and Bibliometric Analysis	Lecture Notes in Mechanical Engineering	Springer Nature	SCOPUS	2021	0.9	1
126	Air-Blast Response of Axially Loaded Clay Brick Masonry	Structural Integrity, 19	Springer Nature	SCOPUS	2022	0.9	48
127	Study on the Effects of CNT and Nano-graphene in Clayey Soil of Aligarh City of Northern India	Lecture Notes in Civil Engineering, 183	Springer Nature	SCOPUS	2022	0.8	1